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INTRODUCTION

Benthic plants throughout the world’s coastal regions
harbor populations, often very dense, of small grazing
and detritivorous invertebrates, primarily amphipod and

isopod crustaceans and gastropod molluscs. In many
vegetated marine and estuarine ecosystems these meso-
grazers are the dominant primary consumers (Orth &
van Montfrans 1984, Brawley 1992). Estimates based on
production and consumption rates, as well as a limited
number of experimental studies, suggest that such meso-
grazers are pivotal both in transfer of primary production
to higher trophic levels, including fisheries (Kikuchi
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1974, Klumpp et al. 1989, Edgar & Shaw 1995, Taylor
1998), and in structuring the assemblages of plants on
which they feed (Orth & van Montfrans 1984, Jernakoff
et al. 1996, Duffy & Hay 2000, Duffy et al. 2001). In some
seagrass systems, in particular, mesograzers may be
important ecological engineers (sensu Jones et al. 1994)
in that their preferential grazing on fast-growing epi-
phytic algae releases macrophytes from competition
(Robertson & Mann 1982, Hootsmans & Vermaat 1985,
Howard & Short 1986, Neckles et al. 1993), allowing
macrophytes and the ecologically and economically
important communities that depend on them to flourish.
Despite such evidence, however, general conclusions
about the role of grazing in ecology of seagrass systems
remain elusive (Orth 1992, Jernakoff et al. 1996, Valen-
tine & Heck 1999).

Among several contributors to the continuing uncer-
tainty about the role of grazing in seagrass dynamics, 
2 important ones are our rudimentary understanding
of mesograzer feeding biology at the species level (Jer-
nakoff et al. 1996), and the paucity of rigorous experi-
mental studies of their impacts on plant populations
and community structure (Duffy & Hay 2000, Duffy et
al. 2001). Largely because of general similarity in body
size and challenging taxonomy, it has been common to
lump mesograzers into a homogeneous functional
group believed to feed relatively non-specifically on
microalgae and detritus (Steneck & Watling 1982,
Edgar 1990a, Bell 1991). This view is supported
directly by some evidence from gut contents and feed-
ing assays (Nagle 1968, Nelson 1979, Jernakoff et al.
1996) and indirectly by experiments showing a degree
of functional equivalence among co-occurring meso-
grazer species. In particular, experimental manipula-
tions of mesograzer abundance and species composi-
tion in the field (Edgar 1990a, Edgar & Aoki 1993)
resulted in rapid compensatory responses of the meso-
grazer assemblage, consistent with diffuse competition
and limitation by a common resource, presumably
periphyton production (the ‘production ceiling’ hypo-
thesis, Edgar 1993). This evidence for functional equiv-
alence of mesograzers stands in contrast to experimen-
tal studies showing significant variation among meso-
grazer species in feeding preferences or diet range
(Zimmerman et al. 1979, Kitting 1984, Duffy 1990,
Duffy & Hay 1994, 2000), and in impacts on biomass
and species composition of the plant assemblage
(Duffy 1990, Jernakoff & Nielsen 1997, Duffy & Hay
2000, Duffy et al. 2001). Because evidence for meso-
grazer functional equivalence versus diversity often
have come from studies using different methods, the
potential importance of mesograzer diversity to ben-
thic plant dynamics remains unresolved.

In this study we used microcosm experiments to test
the functional equivalence, in terms of both resource

use and impacts on the plant assemblage, of 2 of the
dominant grazing amphipod taxa in vegetated habitats
along much of the east coast of North America. We
stocked outdoor eelgrass Zostera marina microcosms
with Gammarus mucronatus and ampithoid amphi-
pods (a mixture of the morphologically similar species
Cymadusa compta and Ampithoe longimana) singly
and in combination, and followed the development of
the fouling assemblage on eelgrass. We asked the fol-
lowing questions: (1) Do the 2 amphipod taxa compete
for resources? And (2) do they differentially affect the
species composition and biomass of the eelgrass foul-
ing community? We show that, whereas the 2 amphi-
pod taxa feed on a similar spectrum of plants and
demonstrably compete for the limiting resource of
periphyton, subtle differences in their feeding prefer-
ences are magnified into substantial divergence in bio-
mass and species composition among fouling assem-
blages.

MATERIALS AND METHODS

Laboratory feeding assay. As an initial assessment of
whether feeding preferences of Gammarus mucro-
natus and the common ampithoid Cymadusa compta
differed, we conducted a laboratory choice assay mea-
suring feeding on eelgrass and several macroalgal epi-
phytes and drift algae common in local eelgrass beds
during summer. These were Zostera marina (live
green), Z. marina (senescent brown), the red algae
Agardhiella subulata and Polysiphonia harveyi, and
the green algae Ulva sp., Enteromorpha sp. and Blidin-
gia (formerly Enteromorpha) sp. One small piece of
each of the 7 food types was blotted dry, weighed and
placed in a shallow bowl along with either 3 C. compta
or 6 G. mucronatus, corresponding to approximately
equal grazer biomasses at the time of the experiment.
After ~72 h, the pieces were removed, blotted and
weighed again. Twenty replicate bowls were set up for
each species, and 20 bowls with plant pieces but no
grazers were run simultaneously to estimate autogenic
mass changes unrelated to grazing. We tested whether
the 2 amphipod species differed in grazing rates on
each plant type using separate 2 sample t-tests, with
experiment-wise error rate controlled using the se-
quential Bonferroni procedure (Rice 1989).

Microcosm experiment. We conducted a microcosm
experiment in summer 1998 to assess the degree of
functional equivalency between 2 amphipod taxa, Gam-
marus mucronatus and ampithoid amphipods, that are
dominant components of the epifauna in vegetated
coastal habitats along much of the east and Gulf coasts
of the USA (Nelson 1979, 1980, Schneider & Mann
1991, Duffy et al. 2001). Our experiment tested 
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(1) the existence of competition between these 2 am-
phipod taxa, as evidenced in reduced population
growth rates in the presence of the other grazer, and (2)
impacts of the 2 grazer taxa, alone and in combination,
on the dominant sessile organisms of local seagrass
beds in summer, namely eelgrass, its micro- and macro-
epiphytes, and the tunicate Molgula manhattensis. Two
morphologically very similar species of ampithoid am-
phipods, Cymadusa compta and Ampithoe longimana,
are present in eelgrass beds in our area. Because it was
logistically prohibitive to identify individual live am-
phipods microscopically before stocking them in our
experiment, these 2 species were introduced to our
ampithoid treatments in unknown proportions. Hence,
by necessity, we have pooled these 2 species as ‘amp-
ithoids’ in our analyses and discussion.

The experiment was conducted in a series of thirty-
five, 22 l opaque white plastic microcosms located at
the Virginia Institute of Marine Science. The outdoor
microcosms were supplied with a constant flow of
sand-filtered estuarine water from the adjacent York
River and were exposed to ambient conditions of light,
temperature and weather. A 250 µm mesh filter bag
was placed under each container’s inflow valve to min-
imize colonization of the containers by unwanted graz-
ers (larvae of sessile invertebrates evidently passed
easily through the filter as they consistently colonized
our experimental chambers, sometimes in large num-
bers). Water flowed out of each container through 4
holes of 4.5 cm in diameter and covered with 1 mm
plastic mesh.

The experiment included 5 treatments: (1) a grazer-
free control, (2) Gammarus mucronatus alone (N0 = 35
amphipods), (3) ampithoids alone (N0 = 35), (4) both
taxa at ‘low’ density (N0 = 18 amphipods of each taxon,
such that combined abundance is equal to that of the
single-taxon treatments), and (5) both taxa at ‘high’
density (N0 = 35 amphipods of each taxon, such that
abundance of each species individually equals its
abundance in the corresponding single-taxon treat-
ment). Each treatment was replicated in 7 independent
microcosms in a randomized-block design, with all
treatments in a given block established on the same
day, stocked from the same collection of eelgrass and
grazers, and placed in physical proximity to each other
within the microcosm array. Initial amphipod densities
were near the low end of the range we have measured
in local eelgrass beds in summer.

We initiated the experiment in July 1998, when we
planted 50 eelgrass shoots in each container, simulat-
ing a natural eelgrass density in Chesapeake Bay of
~1000 shoots m–2 (Orth & Moore 1986). Eelgrass in our
area is generally very clean of epiphytes for much of
the year, especially in early summer when our experi-
ment was initiated. For this reason, and because we

chose the cleanest, healthiest eelgrass shoots for stock-
ing the experiment, there were virtually no visible epi-
phytes on the eelgrass when we began the experiment.
Thus, we made no effort to clean the shoots or measure
initial epiphyte load. A few days after planting, we
stocked the microcosms with grazers.

Measurement of treatment effects. At 2 and 4 wk
after amphipods were added to the microcosms, we
collected 2 haphazardly selected eelgrass blades from
each microcosm and pooled them for analysis of epi-
phytic chlorophyll as a proxy for epiphyte biomass. All
fouling material was scraped from the blades using the
edge of a glass microscope slide and vacuum-filtered
onto a glass fiber filter. The filter containing the epi-
phytic material was frozen to disrupt algal cell walls,
then extracted with 20 ml of methanol/acetone/deion-
ized water (45:45:10) at –20°C for 24 h. After the
extract was filtered, chlorophyll a (chl a) concentration
was measured on a Milton Roy 1001 spectrophoto-
meter (Milton Roy Co., Rochester, NY) according to
the methods of Parsons et al. (1984). The area of each
of the cleaned blades was then measured, either
manually as the product of length times width or using
a Li-Cor 3100 area meter (Li-Cor, Lincoln, NE), and
epiphytic chlorophyll concentrations were normalized
to unit blade surface area by dividing the measured
chlorophyll concentration by the area of blade surface
sampled.

The experiment was terminated in each block 4 wk
after grazers had been added. At this time, the second
epiphytic chlorophyll sample was taken, and an addi-
tional 2 blades were removed from each tank to mea-
sure total fouling accumulation. Fouling material was
scraped from the latter blades onto a preweighed
paper filter, dried at 60°C for 48 h and weighed. After
samples for fouling material and epiphytic chlorophyll
had been collected, all remaining eelgrass was up-
rooted, shaken gently in the water to dislodge grazers,
then placed in a plastic bag and frozen. After eelgrass
was removed, the remaining water in the tank was
decanted through a 500 µm mesh sieve. Sieve con-
tents, including grazers, were rinsed with running York
River water, drained and preserved in 70% ethanol.
Eelgrass samples were then separated into above- and
below-ground portions, and any attached macroalgae,
larger sessile invertebrates, and associated grazers
were also separated and identified. Above- and below-
ground eelgrass tissues, algae and sessile inverte-
brates were dried for several days at 60°C and
weighed separately. Any grazers present were added
to the ethanol-preserved sample from that microcosm.

Final abundance, population size structure and bio-
mass of amphipods were estimated using the method
of Edgar (1990b): amphipods were sorted into size
classes by rinsing the sample through a nested series of
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sedimentological sieves (5.6, 4.0, 2.8, 2.0, 1.4, 1.0, 0.71
and 0.50 mm), amphipods retained on each sieve were
counted, and their ash-free dry mass (AFDM) was cal-
culated for each sieve size listed above using conver-
sions in Edgar (1990b); these are 14.7, 5.8, 2.3, 0.91,
0.26, 0.143, 0.058 and 0.023 mg ind.–1, respectively.

To compare amphipod abundance and biomass in
our experiment with field values (see next section), we
normalized abundances to the area of available habitat
surface, including both eelgrass leaves and container
walls in the microcosms. This is based on (1) the
assumption that amphipods are limited either directly
by habitat availability or indirectly by surface area
available for growth of their periphyton food, and 
(2) our observations of both amphipods and their epi-
phytic food source using the wall surfaces as substra-
tum during the experiment. We estimated that the
exposed wall area within a container was 2940 cm2,
and added this to eelgrass surface area estimated by
converting dry mass values using the equation from
Parker et al. (2001): dry mass (g) = 429 surface area
(cm2). Because the container walls are artificial habi-
tats, we also calculated amphipod biomass estimates
standardized to area of eelgrass blades alone and to
bottom area, for comparison with field data and previ-
ous studies.

Field sampling. To assess how amphipod abundance
in our microcosm experiment compared with that in
the field, we sampled epifauna from an eelgrass bed at
Goodwin Islands (37° 12’N, 76° 23’W) in the Lower
York River, Virginia, USA, during October 1999. We
collected 9 replicate samples of eelgrass with associ-
ated animals from the offshore margin of the bed,
where the shallow depth (<0.5 m at low tide) was com-
parable with that of our microcosms. Each sample was
collected from a bottom area of 0.0156 m2 using a
plexiglass core tube, 11.7 cm inside diameter, with a
250 µm mesh bag secured over its top end. The tube
was placed over eelgrass blades with their associated
fauna, blades were cut at the base with scissors, and
the bottom of the tube was closed off. The tube was
then inverted and its contents, including grass, epi-
fauna and any associated algae, were rinsed into the
bag and frozen. In the laboratory, the sample contents
were separated by taxon, and eelgrass was dried for
several days at 60°C and weighed. All mobile epifau-
nal species were identified, counted and sized, and
their biomass was estimated as described above. Ani-
mal abundance per unit surface area was estimated by
converting the measured seagrass biomass to surface
area using the conversion factor mentioned above.

Data analysis. Before statistical hypothesis testing,
variance heterogeneity among treatments was tested
using Cochran’s test and variance was transformed by
log(x) where necessary. Results of the microcosm ex-

periment were analyzed initially using randomized-
block ANOVAs in which the different grazer treat-
ments were considered fixed factors. All analyses used
the block × treatment interaction mean square as the
denominator in the F-tests (Newman et al. 1997). In
cases where the block effect was clearly non-signifi-
cant (p > 0.25), we ignored the blocking factor and
reanalyzed the data with a simple 1- or 2-factor ANO-
VA, following recommendations of Winer et al. (1991).
Where the F-test was significant, we identified differ-
ences among treatments with Ryan’s Q-test (Day &
Quinn 1989).

For several response variables, both mean and vari-
ance in certain treatments were zero or near zero (see
‘Results’), and variance heterogeneity could not be cor-
rected by transformation. In these cases we tested dif-
ferences among treatments using Friedman’s test, a
nonparametric analog of the ANOVA for randomized
block designs (Sokal & Rohlf 1981). Because we know
of no nonparametric multiple comparison test that
accommodates a blocked design and is suitable for use
with heterogeneous variances (Day & Quinn 1989), we
did not follow Friedman’s test with multiple compar-
isons. Nevertheless, the general pattern was clear in all
such cases (see ‘Results’).

RESULTS

Laboratory feeding assay

Gammarus mucronatus and Cymadusa compta con-
sumed nearly identical amounts of all species offered
except Polysiphonia harveyi (Fig. 1). The latter alga
was heavily grazed by C. compta but essentially un-
touched by G. mucronatus. Bonferroni-corrected t-tests
revealed that P. harveyi was the only food offered that
was differentially grazed by the 2 amphipod species.

Grazer population growth and competition

Populations of both amphipod taxa grew rapidly dur-
ing the 4 wk of the experiment, total abundances in-
creasing by well over an order of magnitude in all
treatments (Figs 2A & 3). Two lines of evidence sug-
gest that Gammarus mucronatus and ampithoids
reached a common carrying capacity set by resource
availability during the experiment and that interspe-
cific competition for this resource further limited their
respective population growth rates. First, total amphi-
pod biomass at the end of the experiment was remark-
ably similar across all 4 treatments containing amphi-
pods (Fig. 2B, Table 1), despite starting abundance
(and presumably biomass) in the ‘both high’ treatment
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that was double the initial abundance in any other
treatment. The similarity among treatments in final
amphipod biomass also contrasted with the variation in
final abundance (Fig. 2A, Table 1).

The second line of evidence for a common carrying
capacity comes from a direct test for interspecific
competition: discrete population growth rates of both
Gammarus mucronatus and amp-
ithoids were strongly and significantly
reduced when the other grazer was
present (Fig. 3, Table 2). Thus, po-
pulation growth rates and final densi-
ties of both grazer taxa were reduced
significantly when the other grazer was
present, presumably as a result of ex-
ploitative competition for limited algal
food. Final abundances and biomasses
of the 2 amphipod taxa were roughly
similar in the treatments where both
were present (Fig. 2).

The presence of interspecific com-
petitors also influenced size frequency

distributions of amphipods (Fig. 4). Compared with the
respective single-taxon treatments, both amphipod
taxa showed an increase in frequency of the larger size
classes (2.00 mm sieve size for ampithoids, 2.00 and
2.8 mm sieve sizes for Gammarus mucronatus) when
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Fig. 1. Results of laboratory choice assays measuring the rela-
tive feeding rates (mean ± 1 SE) of Gammarus mucronatus
and the ampithoid Cymadusa compta on eelgrass and 5 macro-
algae common in local seagrass beds. Assays were conducted
simultaneously for both grazers and the no-grazer control.
n = 20 for each bar. *Polysiphonia was the only plant eaten
at significantly different rates by the 2 grazers (Bonferroni-

corrected p < 0.05, t-tests)

Fig. 2. (A) Mean ±1 SE final abundances (Nfinal) and (B) esti-
mated biomasses of amphipods in the absence and presence
of potential competitors. Bars sharing the same letter repre-
sent treatments in which final ampithoid abundance did not
differ significantly at α = 0.05 (Ryan’s Q-tests following
ANOVA, see Table 2); bars sharing the same number repre-
sent treatments in which final Gammarus mucronatus (GAM)
abundance did not differ significantly. The wider, open bar in
the ‘both low’ and ‘both high’ treatments represents the com-
bined data for both taxa (see Table 1); the component filled
bars represent data for the individual taxa. n = 7 for each 

treatment

Source Total abundance Total biomass
df MS F p df MS F p

Block 6 0.0634 1.5 0.22
Treatment 3 0.2267 5.5 0.0074* 3 1400 0.2 0.90
Block × Treatment 18 0.0413
Error 24 7635

Table 1. Results of ANOVAs testing differences among grazer treatments in the
final aggregate abundance and ash-free dry biomass of amphipods (both taxa
combined, Fig. 2). Both response variables were initially analyzed using ran-
domized block ANOVAs; in the case of final biomass the block factor was non-
significant (p > 0.25), so it was subsequently ignored and the data were reana-
lyzed using 1-factor ANOVA, following recommendations of Winer et al. (1991). 

*p ≤ 0.05
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competitors were present at high density. These shifts
in size distribution suggest that interspecific competi-
tion favored larger individuals. Similarly, for G.
mucronatus, the smallest size class also declined sub-
stantially when ampithoids were present (Fig. 4). Can-
nibalism has been reported in Gammarus species
(MacNeil et al. 1999) and may have contributed to the
reduction in smaller size classes, although this would
not explain why the effect was greater in the presence
of an interspecific competitor. Thus, the effects of com-
petition may have fallen disproportionately on new
recruits, potentially explaining the reduced population
growth in the presence of competitors (Fig. 3). The
shift toward larger size in treatments with competitors
also explains why total amphipod biomass was con-
stant across treatments whereas total abundance was
substantially lower in competition treatments (Fig. 2,
Table 1).
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Fig. 3. Mean ± 1 SE discrete population growth rates of
amphipods in the absence and presence of potential competi-
tors. N0 and Nfinal are amphipod abundances at the beginning
and end of the experiment, respectively. Symbols and analy-

sis are as in Fig. 2. See Table 2 for statistical analysis

Source Final abundance Final biomass Population growth rate
df MS F p df MS F p df MS F p

Block 6 114172 1.7 0.211
Treatment 2 5451259 42.8 0.0001* 2 298286 25.6 0.0001* 2 3138 16.9 0.0001*
Species 1 638867 5.0 0.154 1 6163 0.5 0.472 1 1128 6.1 0.019*
Treatment × Species 2 217342 3.2 0.078 2 37824 3.3 0.051 2 592 3.2 0.054
Block × Species 6 240377
Block × Treatment 12 136282
Block × Treatment × Species 12 68339
Error 36 11649 36 186

Table 2. Results of ANOVAs testing differences between amphipod species and among treatments (single grazer taxon, both low
and both high) in the final abundance, final ash-free dry biomass and population growth rate (Nfinal/N0) of amphipods. Block fac-
tors were non-significant (p > 0.25) for final biomass and population growth rate, so these variables were reanalyzed as 2-factor 

ANOVAs, shown here. *p < 0.05

Fig. 4. Size frequency distributions of amphipods in the
absence and presence of potential competitors. Each size
class corresponds to the mesh size (mm) of sieve on which
specimens were retained, when passed through a nested
series of sieves (see ‘Materials and methods’). Total number of 

amphipods is shown for each panel
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Grazer impacts on the eelgrass fouling assemblage

Gammarus mucronatus and ampithoids differed
substantially in their impacts on the assemblage of epi-
phytes, sessile invertebrates and detritus that accumu-
lated on eelgrass during the experiment (Fig. 5). When
first measured at 2 wk, epiphyte biomass (as chl a) was
already very low in treatments containing ampithoids,
with a strong but marginally non-significant (0.05 < p <
0.10) trend toward higher biomass in grazer-free con-
trols. Variance among replicates was high at this time
as a result of the patchy development of diatom tufts
in controls and Polysiphonia harveyi thalli in the G.
mucronatus treatment.

By the end of the experiment, total mass of fouling
material and epiphyte biomass showed similar pat-
terns, being high in the grazer-free control and Gam-
marus mucronatus treatments but virtually absent in
all 3 treatments that contained ampithoids (p < 0.001
for both fouling and epiphytic chl a, Friedman’s test,
Fig. 5). The similarity between G. mucronatus and
grazer-free treatments in these bulk measurements,
however, obscures marked differences in the composi-
tion of the fouling assemblage in these 2 treatments.
Whereas grazer-free treatments were heavily fouled
with periphyton, associated detritus and sediment, G.
mucronatus virtually eliminated this periphytic mater-
ial and allowed the filamentous red alga Polysiphonia
harveyi to flourish, presumably by releasing it from
competition with periphyton. Indeed, P. harveyi, which
was rare in other treatments, dominated the G. mucro-
natus treatment, achieving a dry biomass 8 times higher
than in any other treatment, a significant difference
(p < 0.001, Friedman’s test, Fig. 5). Ampithoids, in con-
trast, entirely eliminated P. harveyi. The other domi-
nant fouling macroorganism, the tunicate Molgula
manhattensis, reached high biomass in the absence
of grazers but was significantly depressed by both
amphipod taxa, particularly ampithoids (Fig. 5,
Table 3). There was a significant block effect on Mol-
gula biomass (Table 3), indicating that some aspect of
stocking schedule or location of the microcosms (both
incorporated in the block effect in our design) affected
this variable; nevertheless, the effect
of grazer treatment was much stronger.

Grazer impacts on eelgrass

Whereas grazers dramatically influ-
enced the fouling assemblages, they
had no impact on eelgrass standing
biomass (above-ground: F4,24 = 0.94, 
p = 0.46, randomized-block ANOVA;
below-ground: F4,30 = 2.12, p = 0.103,

1-way ANOVA, Fig. 6). In contrast, ampithoids did
influence the production of eelgrass macrodetritus.
The mass of fragmented eelgrass collected floating on
the water surface differed significantly among treat-
ments (Fig. 6, Table 3), averaging 4 to 5 times higher in
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Fig. 5. Mean ± 1 SE final masses of total fouling material, epi-
phytes (as chlorophyll a [chl a]) and the dominant fouling
macroorganisms in different grazer treatments. Epiphytic
chl a was measured at Weeks 2 and 4; other variables were
measured only at the end of the experiment (Week 4). P val-
ues in the top 3 panels are from Friedman’s tests. Bars sharing
the same letter in the Molgula panel do not differ significantly 

at α = 0.05 (ANOVA followed by Ryan’s Q-test)

Source Molgula manhattensis Detached eelgrass
biomass

df MS F p df MS F p

Block 6 0.235 3.1 0.021* 6 0.0241 4.2 0.0049*
Treatment 4 1.243 16.4 0.0001* 4 0.0357 6.2 0.0014*
Block × Treatment 24 0.076 24 0.0057

Table 3. Results of randomized block ANOVAs testing differences among grazer
treatments in the final dry biomass of the fouling tunicate Molgula manhattensis

(Fig. 5) and of detached floating eelgrass debris (Fig. 6). *p ≤ 0.05
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treatments with ampithoids than in the grazer-free
control, with the Gammarus mucronatus treatment
being intermediate but not significantly different from
the others. The floating eelgrass fragments bore obvi-
ous grazing scars that presumably resulted from amp-
ithoids grazing on eelgrass after epiphytes had been
depleted.

Field biomass of mesograzers

In October 1999, estimated total biomass of meso-
grazers at our field site averaged 0.11 ± 0.01 mg AFDM
cm–2 eelgrass, with a maximum of 0.20 mg cm–2. Stan-
dardized to unit bottom area, this corresponds to an
estimated average mesograzer biomass of 6.3 ± 0.5 g
AFDM m–2. By comparison, at the end of the micro-
cosm experiment, estimated amphipod biomass per
unit surface area of habitat, including both eelgrass
and container walls, averaged 0.12 to 0.14 mg cm–2

across the grazer treatments. The microcosm estimates
were about 4-fold higher when tank walls were
excluded from the calculations, amphipod AFDM aver-
aging 0.39 to 0.50 mg cm–2 across grazer treatments.
These microcosm estimates are equivalent to 9.5 to
9.9 g amphipod AFDM m–2 bottom.

DISCUSSION

Mesograzer impacts on benthic community structure

Grazing by the 2 amphipod taxa we studied pro-
duced strong but markedly different impacts on eel-
grass fouling assemblages: (1) eelgrass in the absence
of grazers accumulated a thick coating of periphyton,
detritus and tunicates; whereas (2) eelgrass under the
influence of Gammarus mucronatus was generally
clean of periphyton but fouled by heavy growth of
Polysiphonia harveyi; (3) eelgrass exposed to amp-
ithoids was essentially free of all fouling organisms and
sediment (Fig. 5). It is widely appreciated that meso-
grazer feeding on periphyton and epiphytic algae can
potentially enhance the survival and growth of sea-
grasses and other macrophytes (Orth & van Montfrans
1984, van Montfrans et al. 1984, Bell 1991, Brawley
1992, Jernakoff et al. 1996). Less generally recognized
is the diversity in feeding biology among mesograzers
and its potential importance for understanding the
community structure and dynamics of marine vegeta-
tion. The assemblages of small grazing and detritivo-
rous invertebrates that inhabit marine plants have fre-
quently been treated as a relatively homogeneous
group, with similar ecology and feeding biology (Ste-
neck & Watling 1982, Edgar 1990a, Bell 1991). Given
that our experiment focused on amphipod crustacean
taxa of similar body size, the differences in fouling
assemblages that developed under the influence of G.
mucronatus compared with ampithoid amphipods
(Fig. 5) were unexpected. As G. mucronatus dominates
local mesograzer communities in spring, whereas
ampithoids are most abundant in fall (Duffy et al. 2001,
unpubl. data), the divergent impacts we documented
might be realized in the field as well.

Also unexpected was the strong reduction in tuni-
cate abundance by amphipods, especially ampithoids
(Fig. 5), which are primarily herbivorous and perform
best on diets of algae in the laboratory (Cruz-Rivera &
Hay 2000). Amphipods presumably affected tunicates
at or shortly after settlement of their larvae, although
whether amphipods actually eat young recruits or re-
move them through physical disturbance is unknown.
Similarly strong impacts of small, inconspicuous gas-
tropods on recruitment of sessile invertebrates have
been shown experimentally (Osman et al. 1992, Osman
& Whitlach 1995). Interestingly, Molgula manhattensis
is uncommon on eelgrass in the field (where mesograz-
ers are generally abundant), whereas it sometimes
‘blooms’ on eelgrass in our microcosms during summer
if mesograzers are at low abundance. If such effects of
mesograzers on sessile invertebrates are common, it
suggests that their impacts on benthic community
organization may be much more pervasive than
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Fig. 6. Mean ± 1 SE final biomasses of eelgrass (A) above
ground, (B) below ground and (C) as floating, detached frag-
ments, in different grazer treatments. Note different scale for
(C). See Fig. 5 for symbols and Table 3 for statistical analysis

A)  Above-ground

B)  Below-ground

C)  Floating
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presently recognized, extending beyond epiphytes
(Jernakoff et al. 1996) and macroalgae (Duffy & Hay
2000) to the invertebrates that dominate fouling com-
munities throughout the world.

Despite their dramatic impacts on mass and compo-
sition of fouling material, grazers had no significant
impact on growth of eelgrass. This is probably because
the experiment was relatively short (4 wk) and was
conducted during the summer, when eelgrass shoots
are beginning to senesce (Wetzel & Penhale 1983).
Over longer periods of time, particularly during spring
or fall, we suspect that the divergent fouling assem-
blages produced by these grazers would have signifi-
cantly different influences on host macrophyte fitness.
In particular, although both the Gammarus mucrona-
tus and grazer-free control treatments accumulated
large and similar biomass of fouling material, the crust
of periphyton and sediment accumulated in the control
is likely to be much more detrimental to eelgrass than
the similar biomass of Polysiphonia harveyi in the G.
mucronatus treatment. Whereas periphyton is more or
less opaque and coats much of the macrophyte’s blade
surface, presumably reducing light substantially, P.
harveyi grew as tufts of filamentous branches attached
by a small holdfast to the eelgrass blade and probably
had little impact on light attenuation. The enhance-
ment of P. harveyi by G. mucronatus may also indi-
rectly increase recruitment and abundance of meso-
grazers, as finely branched filamentous algae are an
important habitat for small stages of epifaunal species
(Edgar 1983, Hacker & Steneck 1990). Finally, reduc-
tion of tunicate biomass by both amphipod taxa in our
experiment likely would affect macrophyte fitness
eventually as adult tunicates are large, and heavy
accumulations can weigh eelgrass blades down to the
sediment surface.

Resource limitation of mesograzer populations?

The 2 amphipod taxa in our experiment were clearly
limited by a common resource, presumably periphyton
production, as evidenced by the convergence of all
grazer treatments on a similar total biomass (Fig. 2B)
and the clear effects of interspecific competition on
population growth (Fig. 3). Are these amphipods
resource limited in the field as well? Because our study
did not include predators, we cannot address this issue
directly. Nevertheless, 2 lines of evidence are consis-
tent with such bottom-up regulation in Chesapeake
Bay eelgrass beds. First, mesograzer abundances in
our area are generally highest in late summer, when
temperature and insolation (and, thus, potential pri-
mary production) are also highest. Since fish predators
in Chesapeake Bay are also most abundant and largest

during summer (Orth & Heck 1980), this pattern is the
opposite of what would be expected under top-down
control, and what is observed in North Carolina eel-
grass beds, where omnivorous pinfish are abundant
(Adams 1976) and epifaunal amphipod populations
decline rapidly in late spring (Nelson 1979, Duffy &
Hay 1991b, 1994). Orth & Heck (1980) also noted the
much higher abundance of epifauna in Chesapeake
Bay than in more southerly eelgrass beds and sug-
gested that the absence of omnivorous pinfish Lago-
don rhomboides in Chesapeake Bay may release epi-
faunal crustaceans from the heavy predation they
experience southward.

Second, bottom-up regulation of epifauna in our sys-
tem is supported by the evidence for resource limita-
tion. When standardized to total available habitat area
(including tank walls), estimated biomass of mesograz-
ers in our experiment (0.12 to 0.14 mg cm–2, measured
in July) was remarkably similar to that at our field site
(0.11 ± 0.01 mg AFDM cm–2, measured in October),
suggesting that predation does not strongly depress
mesograzer biomass at this site. This conclusion is
complicated somewhat by inclusion in the calculation
of tank walls, a habitat that is not present in the field.
Ignoring the tank walls yields roughly 4-fold higher
estimates (0.39 to 0.50 mg cm–2) of mesograzer biomass
per unit habitat (i.e. eelgrass blade surface) area. Yet
the latter calculations are also biased in that periphy-
ton clearly grew on the walls and amphipods clearly
used this habitat; thus, estimates ignoring the area of
walls artificially inflate the area-standardized grazer
densities (see also Chen et al. 1997 for discussion of
similar effects in pelagic mesocosms). In any case,
although these calculations are obviously preliminary,
the evidence for bottom-up control of mesograzer bio-
mass in our system is consistent with experiments and
energetic calculations (Edgar 1990a,b, 1993) suggest-
ing that epifaunal production in many shallow marine
habitats is limited by plant production rather than pre-
dation. Finally, resource limitation of mesograzer
abundance at our site is also suggested by the virtual
absence of visible epiphyte accumulation on eelgrass
during much of the year.

Our results may offer a partial reconciliation be-
tween the view of mesograzers as a homogeneous
functional group (Edgar 1990a, 1993, Bell 1991) and
the evidence of diverse and selective feeding biology
among taxa (Kitting 1984, Duffy 1990, Duffy & Hay
1991a, Pavia et al. 1999), underscoring that the ques-
tion of functional equivalence depends on the particu-
lar response variable of interest. In terms of energy
flow and trophodynamics, the 2 amphipod taxa we
studied appear equivalent: they competed for the same
resource, both cropped all visible periphyton in the
experiments, reached nearly identical final biomasses
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and were indistinguishable in population growth rates.
At the community level, however, grazing by Gam-
marus mucronatus and ampithoids produced sub-
stantially different fouling assemblages. These results
underscore the important point, emphasized by Paine
(1980), that there is no consistent relationship between
an organism’s contribution to energy flow and its influ-
ence on community structure. The species specificity
of mesograzer feeding preferences and impacts docu-
mented in this and other recent studies (Duffy & Hay
1994, 2000) are likely important contributors to the
variability in macrophyte-epiphyte-grazer interactions
emphasized in recent reviews (Orth 1992, Jernakoff et
al. 1996), as are differences among species in feeding
and population growth rates, which lead to substantial
differences among species in secondary production
(Duffy et al. 2001). The common ‘black-box’ approach
to mesograzer ecology may obscure important pro-
cesses in the trophic dynamics and community organi-
zation of vegetated marine ecosystems.
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